Numerical analysis of singularly perturbed nonlinear reaction-diffusion problems
نویسندگان
چکیده
Semilinear reaction-diffusion two-point boundary value problems with multiple solutions are considered. Here the second-order derivative is multiplied by a small positive parameter and consequently these solutions can have boundary or interior layers. A survey is given of the results obtained in our recent investigations into the numerical solution of these problems on layer-adapted meshes.
منابع مشابه
Numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type
In this paper, we have proposed a numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided in...
متن کاملA hybrid method for singularly perturbed delay boundary value problems exhibiting a right boundary layer
The aim of this paper is to present a numerical method for singularly perturbed convection-diffusion problems with a delay. The method is a combination of the asymptotic expansion technique and the reproducing kernel method (RKM). First an asymptotic expansion for the solution of the given singularly perturbed delayed boundary value problem is constructed. Then the reduced regular delayed diffe...
متن کاملMesh Refinement Strategies for Solving Singularly Perturbed Reaction-Diffusion Problems
we consider the numerical approximation of a singularly perturbed reaction-diffusion problem over a square. Two different. approaches are compared namely: adaptive isotropic mesh refinement and anisotropic mesh refinement. Thus, we compare the h-refinement and the Shishkin mesh approaches numerically with PLTMG software [l]. It is shown how isotropic elements lead to over-refinement. and how an...
متن کاملN -widths for Singularly Perturbed Problems
Kolmogorov N-widths are an approximation theory concept that, for a given problem, yields information about the optimal rate of convergence attainable by any numerical method applied to that problem. We survey sharp bounds recently obtained for the N-widths of certain singularly perturbed convection-diffusion and reaction-diffusion boundary value problems.
متن کاملMonotone Relaxation Iterates and Applications to Semilinear Singularly Perturbed Problems
This paper deals with monotone relaxation iterates for solving nonlinear monotone difference schemes of elliptic type. The monotone ω-Jacobi and SUR (Successive Under-Relaxation) methods are constructed. The monotone methods solve only linear discrete systems at each iterative step and converge monotonically to the exact solution of the nonlinear monotone difference schemes. Convergent rates of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004